Regular Functions (Non-Aggregate Functions)
Name | Description |
---|---|
Gives the first non- |
|
Creating Columns |
|
broadcast
Function
1 2 3 4 5 |
broadcast[T](df: Dataset[T]): Dataset[T] |
broadcast
function marks the input Dataset as small enough to be used in broadcast join.
Tip
|
Read up on Broadcast Joins (aka Map-Side Joins). |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
val left = Seq((0, "aa"), (0, "bb")).toDF("id", "token").as[(Int, String)] val right = Seq(("aa", 0.99), ("bb", 0.57)).toDF("token", "prob").as[(String, Double)] scala> left.join(broadcast(right), "token").explain(extended = true) == Parsed Logical Plan == 'Join UsingJoin(Inner,List(token)) :- Project [_1#123 AS id#126, _2#124 AS token#127] : +- LocalRelation [_1#123, _2#124] +- BroadcastHint +- Project [_1#136 AS token#139, _2#137 AS prob#140] +- LocalRelation [_1#136, _2#137] == Analyzed Logical Plan == token: string, id: int, prob: double Project [token#127, id#126, prob#140] +- Join Inner, (token#127 = token#139) :- Project [_1#123 AS id#126, _2#124 AS token#127] : +- LocalRelation [_1#123, _2#124] +- BroadcastHint +- Project [_1#136 AS token#139, _2#137 AS prob#140] +- LocalRelation [_1#136, _2#137] == Optimized Logical Plan == Project [token#127, id#126, prob#140] +- Join Inner, (token#127 = token#139) :- Project [_1#123 AS id#126, _2#124 AS token#127] : +- Filter isnotnull(_2#124) : +- LocalRelation [_1#123, _2#124] +- BroadcastHint +- Project [_1#136 AS token#139, _2#137 AS prob#140] +- Filter isnotnull(_1#136) +- LocalRelation [_1#136, _2#137] == Physical Plan == *Project [token#127, id#126, prob#140] +- *BroadcastHashJoin [token#127], [token#139], Inner, BuildRight :- *Project [_1#123 AS id#126, _2#124 AS token#127] : +- *Filter isnotnull(_2#124) : +- LocalTableScan [_1#123, _2#124] +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true])) +- *Project [_1#136 AS token#139, _2#137 AS prob#140] +- *Filter isnotnull(_1#136) +- LocalTableScan [_1#136, _2#137] |
Note
|
broadcast standard function is a special case of Dataset.hint operator that allows for attaching any hint to a logical plan.
|
coalesce
Function
1 2 3 4 5 |
coalesce(e: Column*): Column |
coalesce
gives the first non-null
value among the given columns or null
.
coalesce
requires at least one column and all columns have to be of the same or compatible types.
Internally, coalesce
creates a Column with a Coalesce expression (with the children being the expressions of the input Column
).
Creating Columns — col
and column
Functions
1 2 3 4 5 6 |
col(colName: String): Column column(colName: String): Column |
col
and column
methods create a Column that you can later use to reference a column in a dataset.
1 2 3 4 5 6 7 8 9 10 11 |
import org.apache.spark.sql.functions._ scala> val nameCol = col("name") nameCol: org.apache.spark.sql.Column = name scala> val cityCol = column("city") cityCol: org.apache.spark.sql.Column = city |
expr
Function
1 2 3 4 5 |
expr(expr: String): Column |
expr
function parses the input expr
SQL statement to a Column
it represents.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
val ds = Seq((0, "hello"), (1, "world")) .toDF("id", "token") .as[(Long, String)] scala> ds.show +---+-----+ | id|token| +---+-----+ | 0|hello| | 1|world| +---+-----+ val filterExpr = expr("token = 'hello'") scala> ds.filter(filterExpr).show +---+-----+ | id|token| +---+-----+ | 0|hello| +---+-----+ |
Internally, expr
uses the active session’s sqlParser or creates a new SparkSqlParser to call parseExpression method.
struct
Functions
1 2 3 4 5 6 |
struct(cols: Column*): Column struct(colName: String, colNames: String*): Column |
struct
family of functions allows you to create a new struct column based on a collection of Column
or their names.
Note
|
The difference between struct and another similar array function is that the types of the columns can be different (in struct ).
|
1 2 3 4 5 6 7 8 9 10 11 12 |
scala> df.withColumn("struct", struct($"name", $"val")).show +---+---+-----+---------+ | id|val| name| struct| +---+---+-----+---------+ | 0| 1|hello|[hello,1]| | 2| 3|world|[world,3]| | 2| 4| ala| [ala,4]| +---+---+-----+---------+ |
array
Function
1 2 3 4 5 6 |
array(cols: Column*): Column array(colName: String, colNames: String*): Column |
array
…FIXME
monotonically_increasing_id
Function
1 2 3 4 5 |
monotonically_increasing_id(): Column |
monotonically_increasing_id
returns monotonically increasing 64-bit integers. The generated IDs are guaranteed to be monotonically increasing and unique, but not consecutive (unless all rows are in the same single partition which you rarely want due to the amount of the data).
1 2 3 4 5 6 7 8 9 10 11 |
val q = spark.range(1).select(monotonically_increasing_id) scala> q.show +-----------------------------+ |monotonically_increasing_id()| +-----------------------------+ | 60129542144| +-----------------------------+ |
The current implementation uses the partition ID in the upper 31 bits, and the lower 33 bits represent the record number within each partition. That assumes that the data set has less than 1 billion partitions, and each partition has less than 8 billion records.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
// Demo to show the internals of monotonically_increasing_id function // i.e. how MonotonicallyIncreasingID expression works // Create a dataset with the same number of rows per partition val q = spark.range(start = 0, end = 8, step = 1, numPartitions = 4) // Make sure that every partition has the same number of rows q.mapPartitions(rows => Iterator(rows.size)).foreachPartition(rows => assert(rows.next == 2)) q.select(monotonically_increasing_id).show // Assign consecutive IDs for rows per partition import org.apache.spark.sql.expressions.Window // count is the name of the internal registry of MonotonicallyIncreasingID to count rows // Could also be "id" since it is unique and consecutive in a partition import org.apache.spark.sql.functions.{row_number, shiftLeft, spark_partition_id} val rowNumber = row_number over Window.partitionBy(spark_partition_id).orderBy("id") // row_number is a sequential number starting at 1 within a window partition val count = rowNumber - 1 as "count" val partitionMask = shiftLeft(spark_partition_id cast "long", 33) as "partitionMask" // FIXME Why does the following sum give "weird" results?! val sum = (partitionMask + count) as "partitionMask + count" val demo = q.select( $"id", partitionMask, count, // FIXME sum, monotonically_increasing_id) scala> demo.orderBy("id").show +---+-------------+-----+-----------------------------+ | id|partitionMask|count|monotonically_increasing_id()| +---+-------------+-----+-----------------------------+ | 0| 0| 0| 0| | 1| 0| 1| 1| | 2| 8589934592| 0| 8589934592| | 3| 8589934592| 1| 8589934593| | 4| 17179869184| 0| 17179869184| | 5| 17179869184| 1| 17179869185| | 6| 25769803776| 0| 25769803776| | 7| 25769803776| 1| 25769803777| +---+-------------+-----+-----------------------------+ |
Internally, monotonically_increasing_id
creates a Column with a MonotonicallyIncreasingID non-deterministic leaf expression.