关注 spark技术分享,
撸spark源码 玩spark最佳实践

Evaluator — ML Pipeline Component for Model Scoring

Evaluator — ML Pipeline Component for Model Scoring

Evaluator is the contract in Spark MLlib for ML Pipeline components that can evaluate models for given parameters.

ML Pipeline evaluators are transformers that take DataFrames and compute metrics indicating how good a model is.

Evaluator is used to evaluate models and is usually (if not always) used for best model selection by CrossValidator and TrainValidationSplit.

Evaluator uses isLargerBetter method to indicate whether the Double metric should be maximized (true) or minimized (false). It considers a larger value better (true) by default.

Table 1. Evaluators
Evaluator Description

BinaryClassificationEvaluator

Evaluator of binary classification models

ClusteringEvaluator

Evaluator of clustering models

MulticlassClassificationEvaluator

Evaluator of multiclass classification models

RegressionEvaluator

Evaluator of regression models

Evaluating Model Output with Extra Parameters — evaluate Method

evaluate copies the extra paramMap and evaluates a model output.

Note
evaluate is used…​FIXME

Evaluator Contract

Table 2. Evaluator Contract
Method Description

copy

Used when…​

evaluate

Used when…​

isLargerBetter

Indicates whether the metric returned by evaluate should be maximized (true) or minimized (false).

Gives true by default.

赞(0) 打赏
未经允许不得转载:spark技术分享 » Evaluator — ML Pipeline Component for Model Scoring
分享到: 更多 (0)

关注公众号:spark技术分享

联系我们联系我们

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏