关注 spark技术分享,
撸spark源码 玩spark最佳实践

Structured Streaming 之状态存储解析

阅读本文前,请一定先阅读 Structured Streaming 实现思路与实现概述 一文,其中概述了 Structured Streaming 的实现思路(包括 StreamExecution, StateStore 等在 Structured Streaming 里的作用),有了全局概念后再看本文的细节解释。

引言

我们知道,持续查询的驱动引擎 StreamExecution 会持续不断地驱动每个批次的执行。

对于不需要跨批次的持续查询,如 map()filter() 等,每个批次之间的执行相互独立,不需要状态支持。而比如类似 count() 的聚合式持续查询,则需要跨批次的状态支持,这样本批次的执行只需依赖上一个批次的结果,而不需要依赖之前所有批次的结果。这也即增量式持续查询,能够将每个批次的执行时间稳定下来,避免越后面的批次执行时间越长的情形。

这个增量式持续查询的思路和实现,我们在 [Structured Streaming 实现思路与实现概述](1.1 Structured Streaming 实现思路与实现概述.md) 解析过:

而在这里面的 StateStore,即是 Structured Streaming 用于保存跨批次状态结果的模块组件。本文解析 StateStore 模块。

StateStore 模块的总体思路

StateStore 模块的总体思路:

  • 分布式实现
    • 跑在现有 Spark 的 driver-executors 架构上
    • driver 端是轻量级的 coordinator,只做协调工作
    • executor 端负责状态的实际分片的读写
  • 状态分片
    • 因为一个应用里可能会包含多个需要状态的 operator,而且 operator 本身也是分 partition 执行的,所以状态存储的分片以 operatorId+partitionId 为切分依据
    • 以分片为基本单位进行状态的读入和写出
    • 每个分片里是一个 key-value 的 store,key 和 value 的类型都是 UnsafeRow(可以理解为 SparkSQL 里的 Object 通用类型),可以按 key 查询、或更新
  • 状态分版本
    • 因为 StreamExection 会持续不断地执行批次,因而同一个 operator 同一个 partition 的状态也是随着时间不断更新、产生新版本的数据
    • 状态的版本是与 StreamExecution 的进展一致,比如 StreamExection 的批次 id = 7 完成时,那么所有 version = 7 的状态即已经持久化
  • 批量读入和写出分片
    • 对于每个分片,读入时
      • 根据 operator + partition + version, 从 HDFS 读入数据,并缓存在内存里
    • 对于每个分片,写出时
      • 累计当前版本(即 StreamExecution 的当前批次)的多行的状态修改,一次性写出到 HDFS 一个修改的流水 log,流水 log 写完即标志本批次的状态修改完成
      • 同时应用修改到内存中的状态缓存

关于 StateStore 的 operator, partiton, version 有一个图片可帮助理解:

StateStore:(a)迁移、(b)更新和查询、(c)维护、(d)故障恢复

(a) StateStore 在不同的节点之间如何迁移

在 StreamExecution 执行过程中,随时在 operator 实际执行的 executor 节点上唤起一个状态存储分片、并读入前一个版本的数据即可(如果 executor 上已经存在一个分片,那么就直接重用,不用唤起分片、也不用读入数据了)。

我们上节讲过,持久化的状态是在 HDFS 上的。那么如上图所示:

  • executor a, 唤起了 operator = 1, partition = 1 的状态存储分片,从 HDFS 里位于本机的数据副本 load 进来 version = 5 的数据;
  • 一个 executor 节点可以执行多个 operator,那么也就可以在一个 executor 上唤起多个状态存储分片(分别对应不同的 operator + partition),如图示 executor b
  • 在一些情况下,需要从其他节点的 HDFS 数据副本上 load 状态数据,如图中 executor c 需要从 executor b 的硬盘上 load 数据;
  • 另外还有的情况是,同一份数据被同时 load 到不同的 executor 上,如 executor d 和 executor a 即是读入了同一份数据 —— 推测执行时就容易产生这种情况 —— 这时也不会产生问题,因为 load 进来的是同一份数据,然后在两个节点上各自修改,最终只会有一个节点能够成功提交对状态的修改。

(b) StateStore 的更新和查询

我们前面也讲过,在一个状态存储分片里,是 key-value 的 store。这个 key-value 的 store 支持如下操作:

使用 StateStore 的代码可以这样写(现在都是 Structured Streaming 内部实现在使用 StateStore,上层用户无需面对这些细节):

(c) StateStore 的维护

我们看到,前面 StateStore 在写出状态的更新时,是写出的修改流水 log。

StateStore 本身也带了 maintainess 即维护模块,会周期性的在后台将过去的状态和最近若干版本的流水 log 进行合并,并把合并后的结果重新写回到 HDFS:old_snapshot + delta_a + delta_b + … => lastest_snapshot

这个过程跟 HBase 的 major/minor compact 差不多,但还没有区别到 major/minor 的粒度。

(d) StateStore 的故障恢复

StateStore 的所有状态以 HDFS 为准。如果某个状态分片在更新过程中失败了,那么还没有写出的更新会不可见。

恢复时也是从 HDFS 读入最近可见的状态,并配合 StreamExecution 的执行批次重做。从另一个角度说,就是大家 —— 输入数据、及状态存储 —— 先统一往后会退到本执行批次刚开始时的状态,然后重新计算。当然这里重新计算的粒度是 Spark 的单个 task,即一个 partition 的输入数据 + 一个 partition 的状态存储。

从 HDFS 读入最近可见的状态时,如果有最新的 snapshot,也就用最新的 snapshot,如果没有,就读入稍旧一点的 snapshot 和新的 deltas,先做一下最新状态的合并。

总结

在 Structured Streaming 里,StateStore 模块提供了 分片的分版本的可迁移的高可用 key-value store。

基于这个 StateStore 模块,StreamExecution 实现了 增量的 持续查询、和很好的故障恢复以维护 end-to-end exactly-once guarantees

扩展阅读

  1. Github: org/apache/spark/sql/execution/streaming/state/StateStore.scala
  2. Github: org/apache/spark/sql/execution/streaming/state/HDFSBackedStateStoreProvider.scala
赞(0) 打赏
未经允许不得转载:spark技术分享 » Structured Streaming 之状态存储解析
分享到: 更多 (0)

评论 2

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
  1. #1

    第一行链接跳转过去式spark streaming实现思路,不是structured streaming实现思路

    kagada 5年前 (2019-07-17) 来自天朝的朋友 谷歌浏览器 Windows 10 回复

关注公众号:spark技术分享

联系我们联系我们

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏