Dataset API — Untyped Transformations
Untyped transformations are part of the Dataset API for transforming a Dataset
to a DataFrame, a Column, a RelationalGroupedDataset, a DataFrameNaFunctions or a DataFrameStatFunctions (and hence untyped).
Note
|
Untyped transformations are the methods in the Dataset Scala class that are grouped in untypedrel group name, i.e. @group untypedrel .
|
Transformation | Description | ||
---|---|---|---|
|
|||
Selects a column based on the column name (i.e. maps a
|
|||
Selects a column based on the column name (i.e. maps a
|
|||
Selects a column based on the column name specified as a regex (i.e. maps a |
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
agg
Untyped Transformation
1 2 3 4 5 6 7 |
agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame agg(expr: Column, exprs: Column*): DataFrame agg(exprs: Map[String, String]): DataFrame |
agg
…FIXME
apply
Untyped Transformation
1 2 3 4 5 |
apply(colName: String): Column |
apply
selects a column based on the column name (i.e. maps a Dataset
onto a Column
).
col
Untyped Transformation
1 2 3 4 5 |
col(colName: String): Column |
col
selects a column based on the column name (i.e. maps a Dataset
onto a Column
).
Internally, col
branches off per the input column name.
If the column name is *
(a star), col
simply creates a Column with ResolvedStar expression (with the schema output attributes of the analyzed logical plan of the QueryExecution).
Otherwise, col
uses colRegex untyped transformation when spark.sql.parser.quotedRegexColumnNames configuration property is enabled.
In the case when the column name is not *
and spark.sql.parser.quotedRegexColumnNames configuration property is disabled, col
creates a Column with the column name resolved (as a NamedExpression).
colRegex
Untyped Transformation
1 2 3 4 5 |
colRegex(colName: String): Column |
colRegex
selects a column based on the column name specified as a regex (i.e. maps a Dataset
onto a Column
).
Note
|
colRegex is used in col when spark.sql.parser.quotedRegexColumnNames configuration property is enabled (and the column name is not * ).
|
Internally, colRegex
matches the input column name to different regular expressions (in the order):
-
For column names with quotes without a qualifier,
colRegex
simply creates a Column with a UnresolvedRegex (with no table) -
For column names with quotes with a qualifier,
colRegex
simply creates a Column with a UnresolvedRegex (with a table specified) -
For other column names,
colRegex
(behaves like col and) creates a Column with the column name resolved (as a NamedExpression)
cube
Untyped Transformation
1 2 3 4 5 6 |
cube(cols: Column*): RelationalGroupedDataset cube(col1: String, cols: String*): RelationalGroupedDataset |
cube
…FIXME
Dropping One or More Columns — drop
Untyped Transformation
1 2 3 4 5 6 7 |
drop(colName: String): DataFrame drop(colNames: String*): DataFrame drop(col: Column): DataFrame |
drop
…FIXME
groupBy
Untyped Transformation
1 2 3 4 5 6 |
groupBy(cols: Column*): RelationalGroupedDataset groupBy(col1: String, cols: String*): RelationalGroupedDataset |
groupBy
…FIXME
join
Untyped Transformation
1 2 3 4 5 6 7 8 9 10 |
join(right: Dataset[_]): DataFrame join(right: Dataset[_], usingColumn: String): DataFrame join(right: Dataset[_], usingColumns: Seq[String]): DataFrame join(right: Dataset[_], usingColumns: Seq[String], joinType: String): DataFrame join(right: Dataset[_], joinExprs: Column): DataFrame join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame |
join
…FIXME
na
Untyped Transformation
1 2 3 4 5 |
na: DataFrameNaFunctions |
na
simply creates a DataFrameNaFunctions to work with missing data.
rollup
Untyped Transformation
1 2 3 4 5 6 |
rollup(cols: Column*): RelationalGroupedDataset rollup(col1: String, cols: String*): RelationalGroupedDataset |
rollup
…FIXME
select
Untyped Transformation
1 2 3 4 5 6 |
select(cols: Column*): DataFrame select(col: String, cols: String*): DataFrame |
select
…FIXME
Projecting Columns using SQL Statements — selectExpr
Untyped Transformation
1 2 3 4 5 |
selectExpr(exprs: String*): DataFrame |
selectExpr
is like select
, but accepts SQL statements.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
val ds = spark.range(5) scala> ds.selectExpr("rand() as random").show 16/04/14 23:16:06 INFO HiveSqlParser: Parsing command: rand() as random +-------------------+ | random| +-------------------+ | 0.887675894185651| |0.36766085091074086| | 0.2700020856675186| | 0.1489033635529543| | 0.5862990791950973| +-------------------+ |
Internally, it executes select
with every expression in exprs
mapped to Column (using SparkSqlParser.parseExpression).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
scala> ds.select(expr("rand() as random")).show +------------------+ | random| +------------------+ |0.5514319279894851| |0.2876221510433741| |0.4599999092045741| |0.5708558868374893| |0.6223314406247136| +------------------+ |
stat
Untyped Transformation
1 2 3 4 5 |
stat: DataFrameStatFunctions |
stat
simply creates a DataFrameStatFunctions to work with statistic functions.