window Function — Stream Time Windows
window
is a standard function that generates tumbling, sliding or delayed stream time window ranges (on a timestamp column).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
window( timeColumn: Column, windowDuration: String): Column (1) window( timeColumn: Column, windowDuration: String, slideDuration: String): Column (2) window( timeColumn: Column, windowDuration: String, slideDuration: String, startTime: String): Column (3) |
-
Creates a tumbling time window with
slideDuration
aswindowDuration
and0 second
forstartTime
-
Creates a sliding time window with
0 second
forstartTime
-
Creates a delayed time window
Note
|
|
Note
|
|
1 2 3 4 5 6 |
scala> val timeColumn = window($"time", "5 seconds") timeColumn: org.apache.spark.sql.Column = timewindow(time, 5000000, 5000000, 0) AS `window` |
timeColumn
should be of TimestampType
, i.e. with java.sql.Timestamp values.
Tip
|
Use java.sql.Timestamp.from or java.sql.Timestamp.valueOf factory methods to create Timestamp instances.
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
// https://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html import java.time.LocalDateTime // https://docs.oracle.com/javase/8/docs/api/java/sql/Timestamp.html import java.sql.Timestamp val levels = Seq( // (year, month, dayOfMonth, hour, minute, second) ((2012, 12, 12, 12, 12, 12), 5), ((2012, 12, 12, 12, 12, 14), 9), ((2012, 12, 12, 13, 13, 14), 4), ((2016, 8, 13, 0, 0, 0), 10), ((2017, 5, 27, 0, 0, 0), 15)). map { case ((yy, mm, dd, h, m, s), a) => (LocalDateTime.of(yy, mm, dd, h, m, s), a) }. map { case (ts, a) => (Timestamp.valueOf(ts), a) }. toDF("time", "level") scala> levels.show +-------------------+-----+ | time|level| +-------------------+-----+ |2012-12-12 12:12:12| 5| |2012-12-12 12:12:14| 9| |2012-12-12 13:13:14| 4| |2016-08-13 00:00:00| 10| |2017-05-27 00:00:00| 15| +-------------------+-----+ val q = levels.select(window($"time", "5 seconds"), $"level") scala> q.show(truncate = false) +---------------------------------------------+-----+ |window |level| +---------------------------------------------+-----+ |[2012-12-12 12:12:10.0,2012-12-12 12:12:15.0]|5 | |[2012-12-12 12:12:10.0,2012-12-12 12:12:15.0]|9 | |[2012-12-12 13:13:10.0,2012-12-12 13:13:15.0]|4 | |[2016-08-13 00:00:00.0,2016-08-13 00:00:05.0]|10 | |[2017-05-27 00:00:00.0,2017-05-27 00:00:05.0]|15 | +---------------------------------------------+-----+ scala> q.printSchema root |-- window: struct (nullable = true) | |-- start: timestamp (nullable = true) | |-- end: timestamp (nullable = true) |-- level: integer (nullable = false) // calculating the sum of levels every 5 seconds val sums = levels. groupBy(window($"time", "5 seconds")). agg(sum("level") as "level_sum"). select("window.start", "window.end", "level_sum") scala> sums.show +-------------------+-------------------+---------+ | start| end|level_sum| +-------------------+-------------------+---------+ |2012-12-12 13:13:10|2012-12-12 13:13:15| 4| |2012-12-12 12:12:10|2012-12-12 12:12:15| 14| |2016-08-13 00:00:00|2016-08-13 00:00:05| 10| |2017-05-27 00:00:00|2017-05-27 00:00:05| 15| +-------------------+-------------------+---------+ |
windowDuration
and slideDuration
are strings specifying the width of the window for duration and sliding identifiers, respectively.
Tip
|
Use CalendarInterval for valid window identifiers.
|
There are a couple of rules governing the durations:
-
The window duration must be greater than 0
-
The slide duration must be greater than 0.
-
The start time must be greater than or equal to 0.
-
The slide duration must be less than or equal to the window duration.
-
The start time must be less than the slide duration.
Note
|
Only one window expression is supported in a query.
|
Note
|
null values are filtered out in window expression.
|
Internally, window
creates a Column with TimeWindow
Catalyst expression under window
alias.
1 2 3 4 5 6 7 8 9 10 11 12 |
scala> val timeColumn = window($"time", "5 seconds") timeColumn: org.apache.spark.sql.Column = timewindow(time, 5000000, 5000000, 0) AS `window` val windowExpr = timeColumn.expr scala> println(windowExpr.numberedTreeString) 00 timewindow('time, 5000000, 5000000, 0) AS window#23 01 +- timewindow('time, 5000000, 5000000, 0) 02 +- 'time |
Internally, TimeWindow
Catalyst expression is simply a struct type with two fields, i.e. start
and end
, both of TimestampType
type.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
scala> println(windowExpr.dataType) StructType(StructField(start,TimestampType,true), StructField(end,TimestampType,true)) scala> println(windowExpr.dataType.prettyJson) { "type" : "struct", "fields" : [ { "name" : "start", "type" : "timestamp", "nullable" : true, "metadata" : { } }, { "name" : "end", "type" : "timestamp", "nullable" : true, "metadata" : { } } ] } |
Note
|
Find more about the Spark SQL logical query plan analyzer in Mastering Apache Spark 2 gitbook. |
Example — Traffic Sensor
Note
|
The example is borrowed from Introducing Stream Windows in Apache Flink. |
The example shows how to use window
function to model a traffic sensor that counts every 15 seconds the number of vehicles passing a certain location.